Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jack K. Clegg, ${ }^{\text {a* }}$ Michael J.
Hayter, ${ }^{\text {a }}$ Katrina A. Jolliffe ${ }^{\text {b }}$ and Leonard F. Lindoy ${ }^{\text {a }}$

${ }^{\text {a }}$ Centre for Heavy Metals Research, School of Chemistry, F11, The University of Sydney, NSW, 2006, Australia, and ${ }^{\mathbf{b}}$ School of Chemistry, F11, The University of Sydney, NSW, 2006, Australia

Correspondence e-mail:
clegg_j@chem.usyd.edu.au

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Disorder in solvent or counterion
R factor $=0.023$
$w R$ factor $=0.065$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tetraaquabis(pyridine- κN)cobalt(II) diacetate

In the title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$, the octahedral cation is hydrogen bonded to the acetate anions via the coordinated water molecules. The cation and anions lie on a crystallographic mirror plane.

Comment

Our group has long been interested in the use of metal complexes as components for the construction of larger supramolecular architectures (Lindoy \& Atkinson, 2000). In particular, we are interested in the behaviour of metallosystems containing both N and O donor ligands (Clegg et al., 2004, 2005, 2006). The title complex, (I), was obtained for use as a suitable precursor in such studies.

As expected, the coordination geometry for the $\mathrm{Co}^{\mathrm{II}}$ cation (Fig. 1) is close to the ideal octahedral (Table 1), with the O atoms of the coordinated water molecules occupying the equatorial positions and with the axial sites occupied by coordinated pyridine ligands. A mirror plane passes through $\mathrm{Co}, \mathrm{N} 1, \mathrm{~N} 2, \mathrm{C} 1, \mathrm{H} 1, \mathrm{C} 6$ and H6, and a second mirror plane passes through C7, C8, C9 and C10. The acetate anions are hydrogen bonded to the water ligands; see Table 2 for the geometric parameters describing these interactions.

Experimental

The title complex was prepared from the stoichiometric addition of pyridine to an aqueous solution of hexaaquacobalt(II) acetate (2:1). Crystals suitable for the X-ray diffraction study were isolated from the resulting pink solution after several days of slow evaporation.

Received 16 March 2006
Accepted 20 March 2006

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$

$M_{r}=407.28$

Monoclinic, $P 2_{1} / m$
$a=8.3770$ (13) \AA
$b=9.6030$ (15) \AA
$c=11.6700(18) \AA$
$\beta=105.286$ (2) ${ }^{\circ}$
$V=905.6(2) \AA^{3}$
$Z=2$
Data collection
Bruker SMART 1000 CCD diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.668, T_{\text {max }}=0.820$
8936 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0396 P)^{2} \\
&+0.2088 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

$D_{x}=1.494 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation

Cell parameters from 6128
reflections
$\theta=2.5-28.2^{\circ}$
$\mu=0.99 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Prism, orange
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$

2304 independent reflections
2148 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-15 \rightarrow 14$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.065$
$S=1.05$
2304 reflections
141 parameters

H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{Co} 1-\mathrm{N} 1$	$2.1444(13)$	$\mathrm{Co} 1-\mathrm{O} 1$	$2.0921(8)$
$\mathrm{Co} 1-\mathrm{N} 2$	$2.1531(13)$	$\mathrm{Co} 1-\mathrm{O} 2$	$2.0914(8)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$179.75(4)$	$\mathrm{O}^{\mathrm{iii}}-\mathrm{Co} 1-\mathrm{O} 1$	$90.03(4)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{ii}}$	$89.80(5)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Co} 1-\mathrm{O} 2^{2}$	$90.13(5)$
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 1$	$179.80(3)$		

Symmetry code: (ii) $x,-y+\frac{1}{2}, z$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{O}^{\text {vi }}$	0.83 (1)	1.96 (1)	2.7652 (12)	163 (1)
$\mathrm{O} 1-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O}_{4}^{\text {iii }}$	0.88 (1)	1.79 (1)	2.6660 (12)	174 (2)
$\mathrm{O} 2-\mathrm{H} 3 \mathrm{O} \cdots 3^{\text {vii }}$	0.85 (1)	1.88 (1)	2.7111 (12)	165 (1)
$\mathrm{O} 2-\mathrm{H} 4 \mathrm{O} \cdots \mathrm{O}^{\text {iv }}$	0.87 (1)	1.83 (1)	2.6895 (12)	170 (1)

Symmetry codes: (iii) $-x+1, y-\frac{1}{2},-z+2$; (iv) $-x+1,-y+1,-z+1$; (vi)
$x+1,-y+\frac{3}{2}, z$; (vii) $x, y-1, z$.

The C -bound H atoms were included in the riding-model approximation with aromatic and methyl $\mathrm{C}-\mathrm{H}$ bond lengths fixed at 0.95 and $0.98 \AA$, respectively. Methyl H atoms were modelled in positions with idealized torsion angles from the electron density; they are disordered equally over 2 sites about the crystallographic mirror plane. The O -bound H atoms were located in a difference Fourier map and refined with bond-length restraints of 0.90 (2) \AA. The $U_{\text {iso }}(\mathrm{H})$ values were fixed at $1.2 U_{\text {eq }}$ of the parent atoms.

Figure 1
An ORTEP-3 (Farrugia, 1997) representation of (I), shown with 50% probability displacement ellipsoids. Hydrogen bonds are indicated with dashed lines. Methyl H atoms are equally disordered about the crystallographic mirror plane. [Symmetry codes: (i) $1-x, 1-y, 2-z$; (ii) $x, \frac{1}{2}-y, z$; (iii) $1-x,-\frac{1}{2}+y, 2-z$; (iv) $1-x, 1-y, 1-z$; (v) $1-x$, $-\frac{1}{2}+y, 1-z$.]

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and XPREP (Siemens, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and WinGX32 (Farrugia, 1999); software used to prepare material for publication: enCIFer (Version 1.0; Allen et al., 2004).

We gratefully acknowledge the Australian Research Council for support.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giocavazzo, C., Guagliardi, A., Moliterni, A. G. C., Polidori, G. \& Spagna, S. (1999). J. Appl. Cryst. 32, 115-119.
Clegg, J. K., Lindoy, L. F., McMurtrie, J. C., Moubaraki, B. \& Murray, K. S. (2004). Dalton Trans. pp. 2417-2423.

Clegg, J. K., Lindoy, L. F., McMurtrie, J. C. \& Schilter, D. (2005). Dalton Trans. pp. 857-864.
Clegg, J. K., Lindoy, L. F., McMurtrie, J. C. \& Schilter, D. (2006). Dalton Trans. doi: 10.1039/b517274h.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Lindoy, L. F. \& Atkinson, I. M. (2000). Self-Assembly in Supramolecular Systems, Monographs in Supramolecular Chemistry. Cambridge, England: Royal Society of Chemistry.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: © 2006 International Union of Crystallography All rights reserved

